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1 Problem 1

From Electrodynamics, we know that the continuity equation is ~∇ · ~J = −dρ
dt

. In one
dimension this reduces to

dj

dx
= −dρ

dt
and

dj

dx
=

−h̄
2mi

(
d2ψ∗

dx2
ψ − d2ψ

dx2
ψ∗).

With the use of the SE we also get

dρ

dt
=
dψ∗

dt
ψ+ψ∗

dψ

dt
=
−ψ
ih̄

(
−h̄2

2m

d2ψ∗

dx2
+U∗(x)ψ∗)+

ψ∗

ih̄
(
−h̄2

2m

d2ψ

dx2
+U(x)ψ) = − dj

dx
+

(U − U∗)ψ∗ψ

ih̄

Hence the continuity equation is not satisfied when U∗ differs from U .

2 Problem 2

If the coordinate system is kept as given, then it is necessary to solve the SE for it with the
new boundary conditions

ψ(−L/2) = ψ(L/2) = 0.

If you try the solution of the form ψ(x) = A cos(kx) +B sin(kx) then because you no longer
have the condition ψ(0) = 0, both sines and cosines will be legitimate solutions. Thus, the
simpliest thing to do is to shift coordinates from x to y, where y = x + L/2. Then the
potential extends from 0 < y < L (ψ(y = 0) = 0) and

ψn(y) =

√
2

L
sin(

nπy

L
).

a). Then for the particle in the n′th eigenstate the probability is∫ L/2

0
ψ∗n(y)ψn(y)dy = 2/L

∫ L/2

0
sin2(

nπy

L
)dy = 2/L

∫ L/2

0

1

2
(1− cos(

2nπy

L
))dy = 1/2,
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where the integral of the cosine vanished because of the pereodicity and the probability is
independent of n.

b). Similarly this probability is

∫ 3L/4

L/2
ψ∗n(y)ψn(y)dy = 2/L

∫ 3L/4

L/2
sin2(

nπy

L
)dy = 2/L

∫ 3L/4

L/2

1

2
(1− cos(

2nπy

L
))dy

= 1/2− 1

2nπ
(sin(3nπ/2)− sin(nπ/2))

For the ground state this quantity is 1/2 + 1/π and for large n it is 1/2.

3 Problem 3

In order to solve this problem I will use the orthogonality of eigenstates, i.e.∫ ∞

−∞
ψ∗n(x)ψm(x)dx = δmn,

where ψn is the properly normalized n′th eigenstate, and δmn is 1 for m = n and 0 otherwise.
a). Thus

u(x) = c1ψ1 + c2ψ2

with c2 = 2c1. Then

1 =
∫ ∞

−∞
u∗(x)u(x)dx =

∫ ∞

−∞
(|c1|2|ψ1|2 + c1c

∗
2ψ1ψ

∗
2 + c∗1c2ψ

∗
1ψ2 + |c2|2|ψ2|2)dx = |c1|2 + |c2|2,

where orthogonality was used in the last step. Thus (up to a phase) c1 = 1/
√

5 and c2 =
2/
√

5.
b). The operator E acting on the n′th eigenstate gives En (i.e. Eψn = Enψn). Thus

< E > =
∫ ∞

−∞
u∗(x)Eu(x)dx =

∫ ∞

−∞
(E1|c1|2|ψ1|2 + E1c1c

∗
2ψ1ψ

∗
2 + E2c

∗
1c2ψ

∗
1ψ2 + E2|c2|2|ψ2|2)dx

= E1|c1|2 + E2|c2|2.

Using the fact that for 1-D well En = h̄2π2

2mL
n2,

< E >=
h̄2π2

2mL
(9/5).

c). When the measurement is taken the particle will be found in either first or second
eigenstate (i.e. we will measure either E1 or E2). In general, the probability of finding a
particle in the n′th eigenstate is

Pn = |
∫ ∞

−∞
ψ∗n(x)u(x)dx|2.
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In our case

P1 = |
∫ ∞

−∞
ψ∗1(x)u(x)dx|2 = |

∫ ∞

−∞
(c1|ψ1|2 + c2ψ1ψ

∗
2)dx|2 = |c1|2 = 1/5

and similarly

P2 = |
∫ ∞

−∞
ψ∗2(x)u(x)dx|2 = |c2|2 = 4/5.

From statistics we know that the expectation value of a quantity is the sum over possible
values times the probability of each value; i.e.

< E >=
∑
n

EnPn = E1|c1|2 + E2|c2|2,

which is the same as in part b).
d). The measurement of energy will collapse the wavefunction down to a single state,

and < E > will equal the value measured. Thus < E > will be E1 or E2.

4 Problem 4

a).

< x > =
∫ ∞

−∞
u∗(x)xu(x)dx = (2/L)|c1|2

∫ L

0
x (sin(xπ/L) + 2 sin(2xπ/L))2 dx

= 2L|c1|2
∫ 1

0
y (sin(yπ) + 2 sin(2yπ))2 dy,

where I used substitution y = x/L in the last step, in order to eliminate L dependence of
the integral. It is now purely numerical and can easily be evaluated on a calculator (or you
can do it by parts) and < x >= 0.7L|c1|2 = 0.14L.

b). The time dependence is added by multiplying each eigenstate by e−i/h̄Ent; i.e. for
ψ(x, 0) = c1ψ1 + c2ψ2

ψ(x, t) = c1ψ1e
−i/h̄E1t + c2ψ2e

−i/h̄E2t

c). Now

< x > =
∫ ∞

−∞
u∗(x)xu(x)dx = (2/L)|c1|2

∫ L

0
x

(
e−i/h̄E1t sin(xπ/L) + 2e−i/h̄E2t sin(2xπ/L)

)2
dx

= 2L|c1|2
∫ 1

0
y

(
sin(yπ) + 2e−iθt sin(2yπ)

)2
dy

= 2L|c1|2
∫ 1

0
y

(
sin2(yπ) + 4 sin2(2yπ) + 2(eiθt + e−iθt) sin(yπ) sin(2yπ)

)
dy,

where θ = (E2 − E1)/h̄ and

2L|c1|2
∫ 1

0
y2(eiθt + e−iθt) sin(yπ) sin(2yπ)dy = 8L cos(tθ)|c1|2int10y sin(yπ) sin(2yπ)dy < 0
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The last integral is less than 0 because sin(yπ) sin(2yπ) is antisymmetric about y = 0.5 and
negative for y > 0.5 (and clearly y takes on greater values for y > 0.5). Thus < x > will be
the smallest whenever cos(θt) = 1, which happends at t = 0. Similarly < x > will be the
greatest whenever cos(θt) = 0; this first happends for

t = π/(2θ) =
πh̄

2(E2 − E1)
=

πh̄

6E1

5 Problem 5

a).
∆p∆x ' h̄/2

The momentum roughly equals it’s uncertainty, thus

E =
p2

2m
' h̄2

8m∆x2
.

Since the uncertainty in position is the diameter of the proton (4fm), E = 9.5 ∗ 10−11J =
6 ∗ 103MeV .

b). For a classical oscillator F = kx and the Kinetic energy at the center equals potential
energy at maximum displacement, i.e. 1/2kx2 = E and

F = 2E/x = 6 ∗ 103MeV/fm

c). In this case

F =
e2

4πε0x2
=
αh̄c

x2
= 0.36Mev/fm,

which is much less than the answer to part b) (thus the proton is confined to the nucleus).

6 Problem 6

In two dimensions the time independent SE is

−h̄2

2m
(
∂2u

∂x2
+
∂2u

∂y2
) + U(x, y)u = Eu.

Once again U = 0 in the well and u(x, y) = 0 outside, thus we have the boundary conditions

u(0, y) = u(x, 0) = u(L, y) = u(x, L) = 0.

Since u must be zero whenever x or y is 0 the solutions are of the form

u(x, y) = A sin(kxx) sin(kyy).
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Since u(L, y) = u(x, L) = 0 we have the following restrictions on kx and ky

kxL = nxπ

and
kyL = nyπ,

where nx, ny = 1, 2, .... Normalizability now states that

1 =
∫ L

0
dx

∫ L

0
dyA2 sin2(nxπx/L) sin2(nyπy/L),

and therefore A = 2/L. Hence we have worked out the eigenstates to be

unx,ny(x, y) =
2

L
sin(nxπx/L) sin(nyπy/L).

Plugging these back into SE gives us the corresponding energies

Enx,ny =
h̄2π2

2mL
(n2

x + n2
y).

7 Problem 7

Near the ground state ∆p ' p. Thus (using ∆p∆x ' h̄/2)

E = p2/(2m) + U ' h̄2

8m∆x2
+ λ∆x4,

and we find the minimum of E by differentiating with respect to ∆x, i.e.

0 = dE/d∆x =
−h̄2

4m∆x3
+ 4λ∆x3.

Solving for ∆x and substituting back into E gives us

E =
h̄4/342/3λ1/3

8m2/3
+
λ1/3h̄4/3

41/3m2/3
=
λ1/3h̄4/3

m2/3
(3/25/3)

and the units work out correctly.

8 Problem 8

Since the virtual particle is created as a result of uncertainty in energy, it’s rest energy
(140MeV ) is roughly ∆E. Thus

d = vt ' ch̄/(∆E) = 1.4fm.
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